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This paper deals with an efficient numerical method for the fully lubricated line contact 
between a rotating, deformable cylinder and a rigid surface. By exploiting the dynamic 
variation structure of this non-linear problem the deformation of and the pressure at the free, 
contact boundary are calculated. The dynamic formulation leads in a natural way to an 
iterative procedure, where the evolution from one iterate to a subsequent one is governed by 
a minimization problem. Physically, the Euler-Lagrange equation expresses the fact that the 
mass has to be conserved. For this reason, in contrast with earlier approaches, mass flux 
defects do not occur here. The proposed dynamic algorithm starts with the calculation of the 
lubricated contact between a rigid cylinder and the rigid surface. Then the stiffness of the 
cylinder is lessened until the desired value is reached, where after the loading on the cylinder 
is increased by moving it towards the rigid surface. The effort to proceed in time is 
significantly reduced by preconditioning: the discretized Euler-Lagrange equation is 
multiplied by an approximation of the inverse of the global operator governing the deflection 
of the cylinder. In this way, solutions that are comparable to large-time (or super-) computer 
computations can be calculated on a PC. @?Z 1991 Academic Press, Inc 

1. INTRODUCTION 

The use of lubricant to reduce the friction between two bodies in relative motion 
induced by a force pressing them together was recorded as early as 2400 B.C. (see 
[ 11). Elastohydrodynamic lubrication (abbreviated EHL) theory studies this 
phenomenon in the ideal case that the (perfectly smooth) surfaces are fully 
separated by a thin fluid layer by regarding both the viscous flow of the lubricant 
and the elastic deformation of the bodies. 

This paper deals with simple, efficient numerical calculations (based on the 
dynamic variation structure), that can be performed on a small PC with results 
comparable to large-time computer computations. 

A simplified description of the flow field has been proposed by Reynolds in 1886 
and the effect of the elastic distortion was considered some decades later. This led 
to the meanwhile classical Reynolds-Hertz model consisting of a second-order, 
non-linear differential equation involving the pressure at the deformed surface and 
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the fluid-film thickness only, and an integral relation between these two quantities. 
Various numerical methods for solving this problem have been reported since 
the sixties. This development started with the inverse method of Dowson and 
Higginson [2]. The algorithms proposed more recently can roughly be classified as 
being either Newton-Raphson (cf. Oh [3]) or Gauss-Seidel methods (cf. Hamrock 
and Jacobson [4]). The Newton-Raphson algorithm linearizes the differential 
equation, while the non-linearity is frozen and now and then updated in the 
Gauss-Seidel approach. Recently, the convergence of the Gauss-Seidel relaxation is 
speeded up by using a multi-grid technique (see Lubrecht [S]). 

In this paper, a different approach is presented. It is based on a new, dynamic 
variation principle, where the Euler-Lagrange equation governs the time evolution 
of the balance of mass. The dynamic iteration requires moderate computer facilities. 
In the present approach it is implemented on a personal computer and an average 
complete calculation takes some 5 min. 

Nowadays, the advantages of variational formulations and allied finite element 
techniques are evident in solid mechanics, but have not quite been so impressive in 
fluid mechanics, in general. The main reason may be that convection and dissipa- 
tion cannot be described by a unified variational principle. However, in standard 
EHL theory the effect of convection is always neglected compared to the viscous 
dissipation. From an engineering point of view this approximation is completely 
satisfactory (see, e.g., [6]). This basic assumption opens the door to the variational 
formulation of EHL theory. 

To make this paper self-contained, this formulation is outlined in Section 2 (for 
a more detailed discussion the reader is referred to [7 or 83). It combines the 
separate variational principles for the elastic deformation of the cylinder and that 
for the creeping flow of the lubricant. As usual, the elastic deformation corresponds 
to a state for which the elastic energy d is minimal, and the equilibrium state in the 
fluid is governed by the minimum of a power functional 9. Starting from these 
sound physical principles a unified formulation can be derived. This formulation is 
such that the total power 9 + d,b of the lubricated system is minimal. 

The dynamic variation principle is used as a guid line for deriving a simplified 
formulation as well as for obtaining numerical solutions. Stated more, explicitly, the 
following two approximations are made within the variational formulation: (i) The 
(usual) approximations leading to the Reynolds-Hertz model. This leads to a 
simplified formulation containing only quantities for and at the deformed surface 
of the cylinder. This is, by construction, still a dynamic variation principle. 
(ii) The discrete representation of the variables, i.e., limiting the time to 
a discrete set of values and replacing the space of admissible variations by a finite 
dimensional subspace. 

Compared to the earlier numerical works, the iteration has a different character. 
In Section 3, the iteration is viewed as a discrete time path. The evolution of this 
path is governed by the minimum of the discrete power functional. In terms of the 
parameters of the admissible subspace of variations, this minimum is described by 
a linear system of equations (Section 4). 
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Usually, the distance between the centre of the deformed cylinder and the rigid 
surface is smaller than the radius of the undeformed cylinder. For this reason, the 
dynamic algorithm to follow starts with a rigid cylinder that is not in (dry) contact 
with the surface. Then the stiffness of the cylinder is lessened until the desired value 
is reached, whereupon the cylinder is moved towards the rigid surface. The velocity 
of this motion is limited by the requirement that the surfaces remain fully separated 
by the lubricating film (Section 5). 

The effort to proceed in time, that is to solve the minimization problem 
describing the evolution form one iterate to a subsequent one, is significantly 
reduced by multiplying the linear system with an approximation of the inverse of 
the global operator governing the deflection of the cylinder. The use of this 
preconditioner concentrates the weight of the matrix around the diagonal and 
allows for an approximation by a quasi-pentadiagonal matrix (Section 6). 

Some results obtained by the dynamic variation method are given in Section 7. 
Finally, the dynamic variation principle for EHL is extended to incorporate 
lubricants having a pressure-dependent viscosity (Section 8). The fundamental dif- 
ficulty arising in this, is that the pressure cannot be viewed as a Lagrange multiplier 
which takes account for the balance of mass. Here, and ad hoc solution of this 
problem will be given: the viscosity is simply evaluated at a previous time level. 
Then, with minor changes, the algorithm for constant viscosity can be used again. 
A more fundamental treatment of an EHL problem with a pressure-dependent 
viscosity will be given in a forthcoming paper. 

2. THE DYNAMIC VARIATION PRINCIPLE 

This discussion on elastohydrodynamic lubrication theory is limited to the 
lubricated line contact between a deformable, rotating cylinder and a rigid surface 
(see Fig. 1). The cylinder is so long that both the deformation of the elastic medium 
and the fluid are independent of the axial direction and have no component in 
this direction. 

FIG. 1. The configuration. 
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The Flow of the Lubricant 

The deformation of the incompressible, Newtonian lubricant that leads to a thin 
film which separates the deformed cylinder from the rigid surface, is described by 
a sufficient smooth, orientation preserving, invertible mapping 

$1 c, -+ c. 

The motion of a label &EC,, is given by the curve t -+ (p(& t). In the Lugrangiun 
view the velocity a,$(& t) of this motion is attributed to the reference position 5. 
Although this conception is formally correct, a fluid is usually not though of as to 
have a well-defined reference configuration, that can be detected in a physical 
experiment. Therefore a fluid is described in the Eulerian setting. That is, the 
velocity v(x, t) is defined as the derivative a,$ evaluated at the current position 
x =$(g, t) of the label 5: 

In the following, stationary velocity fields will be considered. It is to be emphasized 
that this does not imply that the deformation 4 is independent of the time t. 

The fluid film is supposed to be homogeneous as long as the pressure p exceeds 
the cavitation pressure po,, which value may be normalized by setting po, = 0. By 
assumption, the flow of the lubricant is dominated by the viscous forces. Conse- 
quently, the equations in the interior of the physical domain Z (which is confined 
to p > 0) can be obtained from the power functional 

(V,v +V,vT): V,v -p div,v 
> 

dx. 

Here, the constant p denotes the viscosity, and A: B= trace(ABT) for all square 
matrices A and B. Including also variations on the boundary Z, the first variation 
of 9 reads 

6P(p, v; 6p, 6~) = J1’ (6~. (-div,p(V,v + V,vT) +V,p) -Sp div,v) dx 
L 

+ s 6~. (p(V,v + V,vT) - pZ)n ds. 
dZ 

Hence, the requirement that the first variation of 9 vanishes for arbitrary variations 
of v provides the well-known Stokes equations that govern the motion of the fluid 
under the assumption that the viscous forces are dominant. Moreover, variations 
with respect to p lead to the equation of continuity. Stated differently, the pressure 
p can be seen as a Lagrange multiplier which is introduced to take account for the 
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incompressibility constraint. Finally, it is to be observed that if the equilibrium in 
the interior of C is satisfied the first variation becomes 

6P=J &.(~@7,v+V,v~)-pZ)nds, 
PZ 

and (n(V,v + V,vT) - pZ)n ds is the force on a part ds of aJ5. 

The Deformation of the Elastic Cylinder 

The motion of an elastic particle 5 in the cross section Q, of the undeformed 
cylinder is a result of both the rigid rotation of the cylinder, 5 + X = R(t)& and the 
elastic deformation X + v(X). Hence, it is natural to describe the mapping of 5 by 
the combination 

and o denotes the angular velocity in Q,. 
The shape of the deformed contiguration 52 is constant in time if w does not 

depend on t. The latter will be adopted here and is referred to as stationary defor- 
mation. However, it is to be stressed that the mapping of the labels depends on time 
due to the presence of the rotation R. This rotation induces a kinetic energy 

where p denotes the mass density in Q, p0 the mass density in 52,, and v, is the 
velocity of the rotation. As is common in the linear theory of elasticity (see, e.g., 
Marsden and Hughes [9]), the time-independent deformation w in the interior of 
Q, is required to be a stationary point of the Lagrangian 

where C is the elasticity tensor. Or written explicitly, w is such that the first 
variation. 

sa(w; SW) = ?*Jk,, (6~. (-div,CV,v + po(v, .VxJ2 w) dX 

vanishes for all functions 6~. 
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The Dynamic Variation Principle 

Concluding so far, the deformation of the cylinder and the creeping flow of the 
lubricant are governed by two, different variational principles. In essence, the 
unified formulation consists of these two constituents plus the requirement that 
the forces on the common, free boundary 

should be in equlibrium, i.e., 

CV,wnOds,oyrP’= -(p(V,v+V,vT)-pZ)nds on I-. (3) 

It is to be noted that the minus sign in this expression is caused by the fact that 
the normals v(nO) and n are opposite: n, is the unit outward normal of Q, and n 
the unit normal of Z. 

Since the forces in the balance on r appeared as boundary terms in the first 
variations of d and 9, the equations in the interior of the elastic medium and in 
the fluid as well as the correct balance of force on the common boundary r are 
obtained from 

69(p, v; 6p, 6v) + 6b(w; 6yr) = 0 (4) 

for all variations subject to 

6v=6yq-1 on r. (5) 

The free boundary r itself is determined by the (no-slip) condition 

v=a,(yoR)o(y”R)-’ on r. (6) 

In addition, the formulation is completed by imposing Dirichlet conditions on the 
fixed boundaries. 

The sound physical foundations of 66 = 0 and 69 = 0 seem to be lost in the 
coupling. In particular, the two terms in (4) differ by a factor with the physical 
dimension time and the same is true for expression (5). In fact, the mappings $ and 
~0 R (Eq. (6)), as well as the variations of w and v (Eq. (5)), are required to be 
equal on r. However, variations of w and v are in essence very different. Arbitrary, 
instantaneous variations of the velocity in the fluid can only be achieved by 
considering time-dependent variations of the mapping of the fluid particles. The 
elastic deformation w is, by contrast, not-a function of time. This discrepancy feeds 
the conception that variations should not be interpreted as being instantaneous, but 
as continuous dynamic changes. 

To that end, the b-operator is viewed as a differentiation with respect to t at a 
fixed time, say t = t,: 
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A variation of the velocity v in C can then be seen as a change in time 

V(x, t) = v(x) + (t - to) h(x), 

and likewise 

P(x, t) = P(X) + (t - to) &4x). 

Both the elastic deformation w itself and variations of v do not depend explicitly 
on time. Therefore, a time-dependent elastic deformation Y(X, t) is to be 
introduced according to 

Y(X, t) = v(X) + i(t - t,y 6v(X). 

Then, expression (4) can be given the formulation 

d,(~(P,V)+d,b(l))l,=,,=O. (7) 

The constraint (5) and the no-slip condition (6) follow from the requirement that 

for t in a neighborhood of t = t,. Indeed, putting t = t, leads to (6) and 
differentiating (8) with respect to t, holding x fixed and taking t = t,, gives the 
constraint (5). 

This provides the observation (4)-(j) of the following explanation: the state of 
the lubricated system will be such that dynamic changes of the velocity and 
pressure in C and the deformation of 52, do (in first order) not alter the total 
power 9” + d,l, where on the common boundary r the no-slip condition (8) should 
be satisfied. 

The Reynolds-Hertz Approximation 

In practice, the task to solve this lubrication problem is relieved by simplifying 
the formulation. The simplification is based on the assumption that E + 1, where E 
is defined as the quotient of the characteristic height and length of C (cf. [lo]). 
Formally, both the extremizing velocity and deformation can be calculated as 
functions of the pressure. If the assumption on the scales of Z is invoked, that is, 
if terms of the order E and higher are neglected, the extremizing velocity in C and 
the extremizing deformation of Q, can actually be calculated, and an integration 
over the height of C can be performed in (7). In doing so, there results (see [8]) 

(9) 
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where the film thickness H(x, t) is given by 

H(f=r,,)=~,,-ko-~+7Y(p) and d,H(t=t,)=O, (10) 
0 

and at t=t,, P(a, t)=P(B, t)=O, P(x, t)>O for a<x<B(t). 
Here, the following notations are introduced. The constant y. denotes the 

distance between the centre of the cylinder and the rigid surface, and k, describes 
the shape of the undeformed cylinder, i.e., k,(x) = Jm, where r is the radius 
of Qo. The x-components of the velocity of the rigid surface and v, are given by 
00 and t?k, respectively. The constants fi and y depend on the elastic material and 
the linear operator y,llp(p) represents the deflection of the cylinder due to the 
pressure p. As usual in contact mechanics (cf. [ 11 I), the integral operator 2 is 
approximated by 

.9(p)(x) = i” log Ix - $1 p(s) ds. 
u 

(11) 

The Inlet and Outlet Boundaries 

Finally, it is to be emphasized that the pressure is independent of the height in 
the considered approximation. This implies that the domain C can be described by 
two x-bounds, a and 6. As is usual in EHL theory, the inlet position x = a is fixed 
while the outlet x = B(t), with B(t,) = b, is treated as a free boundary. By fixing the 
inlet the total mass flux is, in an implicit way, prescribed. In practice the supply of 
lubricant is abundant and the mass flux is unknown. This implies that the inlet 
position has to be chosen far out of the Hertzian (dry) contact region. Later on, 
numerical experiments will confirm that the precise position of the inlet is than of 
little importance. 

3. THE DISCRETIZATION OF THE TIME VARIABLE 

In the light of the dynamic variation principle (7b(8) an iteration for solving the 
EHL line contact problem is seen as a process which takes place in time. That is, 
with r an arbitrary, positive time-step, the identifications 

p”‘(X) = P(x, iz), dyx) = V(x, iT), yJ”‘(X) = Y(X, iz), 

are made. In this manner the motion of the fluid and the deformation of the elastic 
medium are characterized by the requirement that the first variation of the total, 
time-discrete power 

(12) 
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vanishes for arbitrary variations of the pressure and the velocity in Z and for 
arbitrary variations of the deformation of 0, at time t = iz that satisfy: 

(13) 

On a superficial view, the principle (12)-(13) is nothing but a reformulation 
of the observation (4)-(5), where both the functional d and the variation 6~ 
are divided by z. Besides, the time-discrete formulation is dressed up by adding a 
term, namely the functional d at the time-level (i - l)z, which is not part of 
the variations. 

A closer inspection shows that all the salient features of the dynamic variation 
principle (7)-(8) governing the contact between a fluid and an elastic medium recur 
in the time discrete formulation. Except one: the (prescribed) time dependence of 
the elastic deformation differs. This point stands out if one considers variations on 
and of the common boundary r. Here, the position of r can be varied too, since the 
fluid domain Z (t = iz) depends on the elastic deformation ‘Y(iz) of the boundary 
852,. If variations of Z, due to variations of Y(iz) on %2, are considered, the 
boundary term in the first variation of the power functional (12) becomes 

s sV.(P-n(VV+VV*))Ndx 
I- 

The last term in this expression is a result of variations of the fluid domain C. The 
correct equilibrium of forces on r (3) is obtained, as before, if the contribution of 
the variations of r to the Euler-Lagrange equation can be neglected. That is, if 

T [WI 6 1. (14) 

Then, the Euler-Lagrange equations are not altered by taking arbitrary variations of 
thejluid domain C into account and, consequently, the iterative procedure need not 
meet the requirement (10): a,H = 0. 

It goes without saying that the usual simplifications are also performed in the 
discrete-time formulation. By performing the approximations directly in the 
variational principle (12)-(13), it can be shown [12] that the evoluation from one 
time-level to another is governed by the following functional of P(iz) and B(iz): 

+F (P-P((i- 1)~) Y(P-P((i- 1)~)) dx. 1 (15) 
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Arbitrary variations of the simplified power fucntional 
pressure at time t = iz lead to 

469 

(15) with respect to the 

a, [ -H’ag+&+o,)* +y 1 Y(P)-Y(P((i- 1)~)) 
1% T 
,Y,*[ 

1 

2 
-H'(axW+ (uO+vi)Ha,P-~((uO-uk)/H)*l 

4cl 
at t = iz. (16) 

Moreover, arbitrary variations of the position of the free, outlet boundary B(k) 
lead to the well-known Swift-Sommerfield, or sometimes also called Reynolds’, 
cavitation condition (cf. [lo]), 

a,P(B(iz), ir) = 0. (17) 

The right-hand side of Eq. (16) can be interpreted to result from variations with 
respect to the film thickness following variations of the pressure. Assuming that 
inequality (14) is satisfied, the influence of variations of the fluid domain Z on 
the Euler-Lagrange equation is nil. This statement is also relevant to the 
approximation under consideration, since the functional (15) is obtained by 
substituting the approximating, extremizing velocity V( is) and displacement ‘Y( iz) 
into the basic formulation given by Eqs. (12) and (13). This argument justifies the 
conclusion that the right-hand side of (16) can be neglected. Then, the 
Euler-Lagrange equation ( 16) is the well-known Reynolds equation. 

Physical Interpretation 

The pressure is interpreted as a Lagrange multiplier which is introduced to 
account for the continuity equation. The simplifications leave this view undisturbed: 
the Euler-Lagrange equation (16) is a discretization of the integrated balance of 
mass. To illuminate this assertion the time-discrete mass flux 

is introduced. Since the mass density p of the lubricant is assumed to be constant, 
the integrated balance of mass can be expressed in terms of the flux M/and the time 
rate change of the film thickness h: 

o = M:“(x + A) - M,jf’(x) 
A 

+ V.NI,>=k,,=jrds 

(dfO)a.,M~)+h(i)-h(i~‘). 
5 

The equivalence of the Euler-Lagrange equation (16), with right-hand side equal to 
zero, and the balance of mass (19) is establishes by substituting the extremizing 
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velocity field (which is a Poiseuille-Couette flow; see, e.g., [lo]) into (19). The 
substitution gives [lo] 

My= - ho ( > 1% 
3~~,p”~+~(vO+v~)hliJ~ (20) 

Concluding, the dynamic iteration follows the physical evolution of the balance of 
mass. In this respect the present approach differs from the iterative methods as 
mentioned in Section 1. The need to have a constant mass flux through the contact 
is a physical necessity, which is met here. On the contrary, as is reported by Goglia 
[ 131, as well as by others, the Gauss-Seidel iterative methods can lead to mass flux 
defects up to 20%. 

The governing power functional ( 15) is not quadratic in terms of the pressure. 
This implies that several additional iterations within every time step are necessary 
as an aid in calculating the extremizing pressure distribution pCi). In a classical 
approach, the resulting non-linear Euler-Lagrange equation would be solved using 
a Newton-Raphson iteration (see, e.g., [14]). However, the observation that 
variations of C are of secondary importance indicates another way out: the fluid 
domain C is frozen in. This strategy gives the following iterative procedure. 

THE ITERATION SCHEME. The iterates pCi), i= 1, 2, 3, . . . . with p(j) > 0 on (a, b”‘) 
and pCi) = 0 elsewhere, minimize 

(21) 

where the film thickness is evaluated at the old time level 

h= ya-kO-~+yqp+“), (22) 
0 

and p(O) = given. Moreover, arbitrary variations of (21) with respect to the position 
of the cavitation boundary b lead to the free boundary condition (17). 

Evaluating the film thickness at time t = (i- 1)~ introduces an error in the 
Euler-Lagrange equation. The Euler-Lagrange equation resulting from arbitrary 
variations of (21) with respect to p@) is 

a fiy+ x 
h(i) _ h” ~ 1) = o 

5 
5 

where 

&jj) = _ (h”p ‘)I3 qp(‘) + .! (vo + v,)h(i- 1). 
12u 2 
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The linear Euler-Lagrange equation (23) differs from (20). By introducing a Taylor 
expansion of the film thickness h(‘) the dissimilarity can be stated explicitly: a 
solution of (23) satisfies 

The time-step r is assumed to be so small that the terms of the order T* and higher 
can be neglected. Then, Eq. (23) forms a good approximation of (20) if 

(24) 

In terms of a characteristic velocity v in x-direction and a characteristic height h 
(y-direction) of the fluid domain C the flux ~M,can be scaled by vh. This shows that 
the requirement (24) is fulfilled if the time step t satisfies 

zve1, 

where 1 is a characteristic length (x-direction) of C. 

(25) 

This constraint provides the linear iteration scheme (21)-(22) of a sound basis. 
The film thickness can be evaluated on a preceding time level if the time step is 
restricted to (25). The non-linear formulation (15) itself is an approximation. Thus, 
from a theoretical point of view, the linearization given by (21)-(22) can be called 
exact if rv = 0(s)l. It may be observed that this requirement is identical to (14), 
since IVvl = @(v/h). 

Physically, the requirement (25) expresses that the time-step should be much 
smaller than the residence time l/v in which a fluid particle moves through the 
domain C. In this light the restriction (25) seems to be mild. The more so, since the 
need to linearize (15) is a necessity for computing a steady state solution p of this 
non-linear EHL problem. 

4. THE DISCRETIZATION OF THE SPACE VARIABLE 

Up to this point, the mathematical model has been approximated in such a way 
that the variational structure is maintained. Our next aim is to solve the resulting 
discrete-time problem. The underlying structure dictates the way to proceed: the 
iteration scheme (21 k-(22) has to be executed. To that end the continuous pressure 
function p(j) on [a, b] is discretized by restricting it to a finite dimensional space. 

The x-domain is extended to [a, b,] with h, > b(‘) (i= 1, 2, 3, . ..) and the pressure 
p(j) is restricted to positive values for a <x <b(‘) and equal to zero otherwise. The 
projection into a finite dimensional space can then be written as 

N+l 

p(i)(x) = c PjTj(X) for a<xQ6,. (26) 
J=o 

581:97:2-15 



472 R. VERSTAPPEN 

The basis functions T, are chosen as 

i 

Cx - x1 I )/A j if x, , <x<x, (j#O) 
T,(x)= 0 if x<xiP, or x>x,+, 

(x /+1 - X)lAj + I if x, <x<x,+r (j#N+ l), 

where the grid points x, satisfy 

a=x,<x, < ... <.x,<xj+, < ... <xN+,=bO, Ai = xi - xi , . 

These points are not necessarily uniformly distributed over the interval [a, b,]. The 
tent functions T, are non-negative, have local support and further, T,(x,) = 1, if 
k = j, and = 0 otherwise. Owing to these properties the non-negativity constraint on 
the pressure translates into a non-negativity constraint on the coefficients: 

pi 30 (for ,j = 1, 2, . . . . N). 

Moreover, the boundary conditions are satisfied by taking pb = pi + , = 0. 
A numerical solution characterized by the non-negative coefficients 

(27) 

p’= (Pi, Pi, . . . . Ply) 

minimizes the time-discretized functional (21). The constraint (27) is satisfied by 
setting pi (for j = k, k + 1, . . . . N) equal to zero, whenever the kth component of the 
solution is negative. In this formalism, the free boundary b”’ is just the first point 
to the right of a, where p”‘= 0. Such a solution is solely acceptable if p:, = 0. 
Otherwise, the boundary x = b, is not chosen properly, and the domain has to be 
enlarged in such a way that the relation b, > b(‘) holds. 

The functional (21) can be expressed in terms of the coefficients p’. Dropping two 
unessential constants in (21) namely, 

the discretization can be given as follows: 
The vector pi > 0 minimizes 

(28) 

where the tridiagonal N x N-matrix A is given by 

Aj,=a,+aj+,, Aii+I=A,+I,=-a,+l, Alk=O for k#j-- l,j,j+ 1 

with 
r v/ h3 d-x 

” = J,, , ??j (A/)” 
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Further, the components of the N-vector f are 

and the elements of the N x N-matrix L are defined by 

where 

Y(T.)=(X--xJ-1)210g ,x-x.- , +(x-xi+1)210g ,X-X-m ,, -!(A +A- 
I 

-;;. A. 

/ 1 24 I 4 ’ I+[ ) 
, I+ 1 

1 
-+- ] (x-x,)210g lx--,I. 

I I+ 1 

In principle the integral expressions for a,, f,, and Ljk can be calculated 
analytically. However, the numerical evaluation of the analytical expressions 
requires quite an effort, due to their complexity. For this reason the integrals aj, fj, 
and Ljk are approximated by the trapezoidal rule. In doing so, the integrals adopt 
the simple forms 

a,=&. Ch3(X,)+h3(X,~-l)1 
I 

f,=4C(“CI+U!f)h(Xj~ I)-(UO+Uk)h(X~+I)l 
z,/c = :(A, + A,, 1) T(TAx,)). 

The symmetrical, tridiagonal matrix A is diagonally dominant and positive definite, 
while the elements of L are all strictly negative. 

5. THE ITERATIVE PROCEDURE 

Naturally, the dynamic procedure for the EHL problem consists of step by step 
proceeding in time. Two aspects of this time-like route deserve careful attention. 
First, the path towards the steady-state solution can be cut off by controlling the 
physical parameter y. Second, and much more important, the distance between the 
centre of the cylinder and the rigid surface, i.e., y,, is not given in advance. Instead, 
the loading F on the cylinder is prescribed. This force should be balanced by the 
(pressure) forces on I? 

F= 
i‘ 

’ p(x) dx. (29) (1 

This setting of the problem can be built into the iterative procedure. 
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Continuation of the Parameter y 
Returning to the role of the parameter y it is to be noted that the lubrication 

problem becomes linear if y =O. Or in different words, y measures the influence 
of the non-linear term and by that also the number of iterations. Therefore the 
iteration is started with y = 0, whereupon this parameter is decreased by dy at every 
time-step until the desired, final (negative) value is reached. Physically, this process 
corresponds to an initially rigid cylinder which is weakened in the course of time. 
By choosing an adequate subdivision, the continuation process converges faster 
then the straightforward calculation starting with the prescribed value of y. An 
example which confirms this assertion is given in Fig. 2. 

Satisfying the Load Equation (29) 
As remarked above the iteration has to be adapted if the loading F, and not the 

distance y,, is given in advance. It is important to realize that in engineering 
practice the loading is so high that the distance between the centre of the deformed 
cylinder and the rigid surface is smaller than the radius of the cylinder: y, < r. 
Therefore, the distance y0 is considered as a function of the time, ~6, and is changed 
in time in such a way that the integral over p(j) converges to F, while the film 
thickness is strictly positive. So, starting from a value greater than the radius of the 

10 - 

6- 

ot I , I I 

0 a 16 24 32 40 

FIG. 2. The convergence with and without the continuation of the parameter y: the difference 
log( 1 +max Ipi-p’+‘I) versus i. The stiffness of the cylinder is slowly decreased according to y’= i dy 
for i = 1, . . . . 10 and constant for i > 10 (bold crosses) or constant for all i, i.e., y’ = 1Ody for i > 0 (crosses). 
dy=1.2x10~8,theMoesnumberM~0.9(i.e.,y~~r),anddr=5x10~5. 
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cylinder, y, is reduced per time step. This reduction, limited by the requirement that 
the film thickness should be positive, induces a constant velocity (yb - yb- ‘)/T 
perpendicular to the rigid surface. This contributes to the time-rate change of the 
film thickness and has to be included in the functional (28). Then the governing 
functional (28) changes into 

(30) 

where 

Figure 3 shows a typical development of the iteration. The increase of the load 
tags after the reduction of the distance y,. And the magnitude of the maximum 
difference between subsequent iterates is almost constant during this process. 

If the physical constraint h >O is not satisfied, the solution p’ is rejected, the 
speed (& - y& ')/T is slackened, and pi is calculated again. Moreover, if the film 
thickness is still not strictly positive, the solution pi is rejected again and so on. 
In practice, the speed at which the rigid surface approaches the cylinder can be 
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FIG. 3. The increment of the load and the difference between subsequent iterates resulting from a 
reduction of the distance y,. The load j p’ (graph a), the diNerence log( 1 + max Ip’ - p’+ ‘I) (b, dashed) 
and the distance r - ,vb (c, dashed) versus i for i = 1,2, . . . . 40. The integral over p’ and the difference 
r- J$ are multiplied by lE-4 and lE6, respectively, A4 ~5, N= 80, At = lo-‘. 
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kept constant over a large number of iterations, and a calculated solution p’ is 
rejected rarely. 

The decrease of y, is stopped when the integral over the pressure is close to the 
load F and the steady state belonging to y,, denoted by p(~; yO), is calculated. 
Then, Eq. (29) is satisfied by an iterative procedure. That is, ~1~ is increased if 
s: p(x; y) dx > F and d ecreased if otherwise, and the steady state solution belonging 
to the new value of y, is calculated. If necessary y, is adjusted again, and the 
procedure is repeated. 

Summarizing, the algorithm reads 

initial 
i:=O, pi:= 0, y:=o, y,:=r+& 

time-step 
1. h’:=y,-kk,-(fir’/k,)+yLp’ 

correction: if h’ < 0 then reject and increase yO; iteration. 
2. solve pi+’ from Eq. (30) 

cavitation: if pf+ ’ d 0 then pi+’ := 0 for k = i, i + 1, . . . . N 
correction (domain): if b’+ i = b, or hi+ i < b, 

then adjust h,; iteration. 
3. i:=i+l. 

iteration 
in case of 

A. y<y: y:=y-dy, time step. 
B. s pi dx - F> E, > 0: y, := y, + dy,, time-step. 
C. F-J p’ dx > E, > 0: y, := y, - dy,, time-step. 
Otherwise. 

If max I(p’- p’+ ‘)/p’l > s2 or lb’- b’- ‘1 > s3 then time-step else stop. 

Remark. Instead of taking p = 0 as an initial state, the iteration can also be 
started with a solution that is calculated previously. 

6. PROCEEDING IN TIME BY PRECONDITIONING 

This section deals with the numerical problem of solving the pressure pi from the 
discretized power (30). The Euler-Lagrange equation resulting fro variations with 
respect to pi is 

(31) 

and pi has to be solved from this linear system of equations. Solving Eq. (31) at 
every time step is not very attractive, due to the fact that 1 is a full matrix. This 
property of L, in spite of the local support of the basis functions T;, reflects the 
global character of the integral operator 2. 
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Reduction to a Quasi-Pentadiagonal System 

The matrix L will now be considered in more detail. To start, L is written as the 
product of a diagonal matrix D and a matrix L, 

defined by 

E=DL, 

D=$diag(d,+d,,d2+d, ,..., d,+d,+,), L,k = =wTkKX,). 

Apart from a multiplicative factor the jth column of the matrix L can be seen as 
the normal component of the displacement at the boundary of the cylinder caused 
by a pressure distribution described by thejth basis function T,. This interpretation 
feeds the idea that the operator 2 maps the local function T, into a global function. 
And that, in reverse, the operator Y--l maps an argument with local support into 
an image with local support. As is shown in Fig. 4, deformation of the contact 
surface resulting from a localized force T,,(x) is indeed global: The displacement at 
the boundaries of the interval [a, h] resulting from the force T,,(x), which is 
located in the middle of this interval, is approximately one-half of the displacement 
in the middle. 

30 

20 

IO 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 I  I  I  

0 IO 20 30 40 50 

FIG. 4. The discretized deflection operator L and its inverse. The dotted line represents $P( Tz5); the 
continuous line Yo-‘(T,,). By definition, the elements L,,,, of the 25 th row of the 50 * 50 matrix L are 
given by U( Tzs)(x,), where j = 1, 2, 3, __., N = 50, and the corresponding elements of the inverse are given 
by Y-r(T,,)(x,). The equidistant grid that is used covers the domain [-0.0004, O.OOOl], and the 
elements L,,25 and L,-*\ are multiplied by 10’ and 10m3, respectively. It is to be observed that the matrix 
L-' resembles a tridiagonal matrix. 
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On the other hand, the force needed to obtain a displacement given by T,,(x) is 
self-also-localized. Stated differently, the elements of the inverse L- ’ are concen- 
trated around the diagonal. Particularly, this last observation motivates us to 
multiply Eq. (31) by the tridiagonal matrix 0 that is a truncation of L- I: 

glk = L,, ’ if j=k- l,k,k+ 1, and =0 otherwise. 

Then, the following linear system has to be solved: 

(32) 

The product QW ‘A is a pentadiagonal matrix. Thus, the linear system (32) 
can be approximated by a pentadiagonal system if the product QL resembles a 
pentadiagonal matrix. However, as it appears from Fig. 5, the product QL cannot 
be approximated by a pentadiagonal matrix. In fact, 0 is a poor approximation 
of the inverse L- ‘: the difference between OL and the identity is not constant 
over almost the entire domain, and so much the worse, is large near and at 
the boundaries. 

Looking at Fig. 4 again, the tridiagonal matrix Q is almost a discrete representa- 

FIG. 5. The product of L and the approximation of L-’ by the tridiagonal matrix 0. This figure 
shows two rows of the product OL: &&, and QLilz (dashed), where i= 1, 2, 3, . . . . N = 50. The 
tridiagonal matrix Q is given by 0, = L,I’ for Ii - j l Q 1. The grid and domain are the same as in Fig. 4. 
From this figure it is concluded that Q is not well suited as a preconditioner, since multiplying L with 
Q does not lead to a matrix that resembles a band-matrix. 
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tion of the second derivative with’ respect to x. Almost, since the sum of the row 
elements of Q is not zero. This effect causes dissipation and for this reason a more 
gross approximation of the inverse is adopted, namely, the discretization of the 
second derivative. That is, the rows (except the first and the last one) of the 
preconditioner are modified to 

where the constants C, are chosen in such a way that the diagonal elements of QL 
are of the order one. Obviously, there is no need to compute the inverse of L when 
the preconditioner (33) is used instead of Q. This preconditioner is satisfactory if 
the product QL can be approximated by a pentadiagonal (or, more general, by 
a band-) matrix. 

The second derivative of 2 T,(x) can be calculated analytically and reads 

for x<x,-, and for x>x,+,. The Taylor expansion of this expression shows that 
the second derivative of Y( 7’,) behaves (in first order) as 

&.4V(T,)=di+di+’ 
2(x - x,)2’ 

In conclusion, the second derivative of Y( T,) decays as (x - x,) -2 for x < xjP, 
and for x>x,+,. This shows that Q is indeed a good candidate for the precondi- 
tioner, since the product of Q and 2’( rj) is localized around x = xi. In addition, it 
is to be remarked that taking higher derivatives of Y( T,) than the second derivative 
will lead to a better concentration around x= xJ. However, this advantage is 
outweighed by the fact that the product of the discretization of such a higher 
derivative and the matrix A contains many more non-zero elements than the 
product of Q and A. 

Further, on the basis of the symmetry Y(T,)(x,-x) = Y(Tj)(xj + x), it is 
concluded that the boundary conditions belonging to the derivative operator dz, 
are Neumann conditions. However, if the first and last row of Q are taken as 

2c, 
Q,I=-QI,=,,,+,~,, 

2CN QNN= -QNN-I=(~~+~,+,), (35) 

the matrix Q becomes singular. Indeed, the kernel of the second derivative operator 
with Neumann boundary conditions is spanned by the constant function. Regarding 
Eq. (31) this implies that the level of 
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ought to be set equal to zero. This can be achieved by taking 

Qn=O (36) 

instead of (35), while Q, 1 is unchanged. The result of this approximation is shown 
in Fig. 6. 

The product QL cannot be approximated by a pentadiagonal matrix, due to the 
fact that in this approach the weight of the first row is not concentrated around the 
diagonal. More precisely, the multiplication with Q does not alter the ratio between 
the elements of the first row of L. Therefore, the product QL is a so-called quasi- 
pentadiugonal matrix, i.e., a pentadiagonal matrix with one full row. In this manner, 
the global character of the operator Y is still present. 

Solving the Quasi-Pentadiagonal System 

A quasi-pentadiagonal system can be solved efficiently by a partition method 
(see, e.g., Froberg [ 151). Denoting the quasi-pentadiagonal matrix (with a full first 
row) by S and considering the system Sp = r, the first equation is separated from 
the rest, i.e., 

s=(s; ;>, p=(!J, r=(;), 
1 

C 

-1 I  1 

0 IO 20 30 40 50 

FIG. 6. The product of L and the preconditioner Q. This figure shows two rows of the product QL: 
QL,,,, and QL,,, (dashed), where i= 1, 2, 3, _.., N= 50. The preconditioner Q is given by (33) (35) 
and (36). The grid and domain are the same as in Fig. 4. Compared to that figure, the multiplication 
of the matrix L is much more successful; here the product of the matrices can be approximated by a 
tridiagonal matrix. 
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with, for j, k = 1, 2, 3, . . . . N- 1, 

~,k=si+Ik+b .yj=s,,+,, IT, = s- /+11, Pj=P,+l, i, = r /+I’ 

Then, the solution (p, , p) is given by 

(s,,-(s.z))p,=r,-(o-w), p=w-p,z, where SW = r, Sz = (r. 

Hence, the solution p can be calculated straightforwardly from the vectors w 
and z. These two unknowns can be solved easily, since S is a pentadiagonal matrix. 
If this is done by a LU decomposition, the solution of a quasi-pentadiagonal 
system takes only approximately 50% more operations ( + , - , *) than solving a 
pentadiagonal system. This difference will even be less in computation time, since 
additional divisions can be avoided. 

7. RESULTS 

Recent developments in the field of EHL resulted into an “efficient and robust” 
solver [ 161 which runs on a (Cray XMP) supercomputer and a “very powerful” 
multigrid technique [S] which takes up the storage of a powerful computer. 
Compared to these algorithms the present approach requires moderate computer 
facilities. In fact, the dynamic iteration is implemented on a personal computer 
(Olivetti M240), where the computer run time varies between one and ten minutes. 

Considering the dynamic approach in detail there is, of course, no need to 
calculate the intermediate results with a high accuracy. For this reason the subse- 
quent iterates are calculated on a relatively coarse grid. Then, after the steady state 
is approached, the solution is interpolated on a liner grid and the iteration is 
continued until the stopping criterion is satisfied. Figure 7 shows two intermediate 
results, which are found at approximately one-third and two-thirds of the total 
number of iterations. These iterates are calculated using only 25 nodes. The final 
solution is written as a combination of 100 basis functions. As it appears from 
Fig. 8, the difference between this solution and the steady state calculated with 
N = 25 is small. From an engineering point of view the latter is as satisfactory as 
the former. 

Here, the inlet position x=a is fixed while the outlet x= b is treated as a free 
boundary. The fixation of the inlet is based on the assumption that its precise posi- 
tion has no (or, better, little) influence on the solution. The present calculations 
confirm the statement made in [ 171 that a = -4b,, where 6, denotes the semiwidth 
of the Hertzian contact, is a good choice for moderate and highly loaded contacts. 
However, if the contact is lightly loaded, that is if the number 

M := F( -7cy/(rp(uo + u,))“.~, 

which is introduced by Moes [ 181, is smaller than 5, the inlet area should be larger 
in order to prevent starvation. This effect is illustrated in Fig. 9. 
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FIG. 7. The steady-state solution and two intermediate results. The pressure p’(x; yb), where r- J$ 
is two times the steady-state distance r - y, in graph b and three times that in a. The graphs a and b 
are calculated with N= 25, while the steady state (c) is represented using 100 basis functions. The 
physical parameters used are (in SI units): a= -lE-3, p =0.3, r=O.Ol, y,=O.O09985, o= 50, 
o0 = wr = 0.5, p = 8000, E ( = Young modulus) = lEl1, v ( = constant of Poisson) = 0.3 (M z 10). 
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FIG. 8. Dependence of the calculated pressure distribution on the number of gridpoints. The 
pressure p where the parameters are as in Fig. 7c, with N = 100 and N = 25 (crosses). 
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0.06 

0 

FIG. 9. The dependence on the position of the inlet boundary. The pressure p in the inlet region for 
differnt choices of the inlet position x = a: a = - I,!- 2 = --r (a); -8E- 3 (b); -fjE- 3 (c); -L$E- 3 
(d); -2E-3 (e); -lE-3 (f); -8E-4 (g); -6E-4 (h); -4E-4 (i); -3E-4 (j); -2E-4 (k); 
- lSE- 4 (1). The Moes number M z 3, the space variable is scaled on the Hertzian pressure. The inset 

shows the global pressure distribution in the cases a and j. 

Hence, for lightly loaded contacts the inlet region is large compared to the width 
of the Hertzian contact, while on the other hand the pressure gradients in the inlet 
are comparatively small. Therefore a non-equidistant grid is used. In this context, 
it is to be remarked that the mesh sizes should be of the form Aj = nj A (where nj 
is an integer) in order to maintain that part of the symmetry of the matrix L, which 
allows for a storage of only O(N) elements. 

Pressure distributions and film thicknesses obtained by the dynamic iteration 
method are given in Fig. 10 and 11, respectively. The parameter setting corresponds 
to a realistic steel-mineral oil contact. The minimal film thickness are very much in 
agreement with the formula given in [S]. As can be seen from Fig. 12 the thickness 
and the free, cavitation boundary. A blowup of the pressure around the cavitation 
boundary x = b is given in Fig. 13, where a non-equidistant refinement of the grid 
is used. Clearly, the numerical solution does not satisfy the free boundary condition 
(17) exactly, but in view of the large gradients involved, the tendency towards ( 17) 
is visible. 

581/97:2-I6 
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FIG. 10. The dependence of the pressure on the loading. The pressure p for three different values of 
the loading: w= 2.57E5 (a); 5.15E5 (b); 7.71E5 (c). The physical parameters are as in Fig. 7, except 
a= - 1.25e- 3 and, of course, y,, differs. The Moes numbers are approximately 10, 20, and 30. 
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FIG. 11. The dependence of the film thickness on the loading. The film thickness belonging to the 
three pressure distribution shown in Fig. 10. 
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FIG. 12. The grid used for the calculation of the graphs 9B and IOB. 
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FIG. 13. The pressure p in the neighborhood of the cavitation boundary x = b. This computation is 
performed using a non-equidistant grid refinement. The x variable and p are scaled as in Fig. 9; ,442 10. 
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8. PRESSURE-DEPENDENT VISCOSITY 

This section will deal with one extension of the previous analysis; the incorpora- 
tion of a pressure-dependent viscosity like 

p=poexp L y%l +P/Po)‘- 1) 2 1 
where (in SI units) 

p. = 1.96 x lo’, ctpo = z(log( PO) + 9.67). (39) 

This relationship between p and p was found empirically by Roelands [ 191 and is 
commonly referred to as Roelands’ equation. 

Concerning the variational structure of EHL, the pressure-dependence of p has 
important consequences. Generally speaking, a set of differential equations that has 
a variational structure will lose this structure when constant parameters in the 
equations are changed into functions of quantities that are subject to variations. 

Here, an ad hoc solution is be given: the viscosity p in the time-discrete power 
(12) is evaluated at the previous time level t = (i - l)r, 

p = p(p(i- 1’). (40) 

Then the Euler-Lagrange equations resulting from arbitrary variations at time 
t = iz are not altered, since the relation between the viscosity and the pressure p’j- ‘) 
is not subject to variations. Moreover, the Euler-Lagrange equation (32) becomes 
linear in terms of the pressure p@) and can be computed from the quadratic, convex 
minimization problem (28) as is described in Section 5. 

Just as the approximation h = h(p”- I’) induces an error in the mass flux A4/, the 
effect of taking (40) instead of p = ~(p”‘) is similar. The additional error that is 
introduced in this way can be observed from the formulae, 

MfI,(,(l)) = Mflp(pll) +z a,y,a,p+ O(z2) 

h3a p 

[ 1 

z-1 
= M,ly(pi’-ll) + z --2- 

m 
CI l+P a, p + o(T*). 

PO 

This implies that p(pci)) in the integrated equation of continuity (19) can be 
replaced by p(p”- ‘I) if 

( -.a,p[~+~li~114,Ya,Y(p)l. Ta h3axP 
x 12jl (41) 

In terms of the characteristic dimensions introduced in Section 3 the flux Mfcan be 
scaled by vh, and a, by 1~ ‘. Furthermore, 
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since llog Ix--s1 1 > 1. Inserting these scalings in (41) shows that Eq. (19) 
is (almost) not altered by adopting the approximation (40) if the time step r is 
restricted to 

TV=$ l+PF ) 
&!.I [ 1 

I--; 
(42) 

where pmax is the maximum pressure occurring in the lubricant. 
The above calculation resembles the approach described in Section 3. There, it 

was shown that the time step has to satisfy the condition (14), i.e., tv 4 1, in order 
to justify the approximation h = h(p (‘- ‘I). Evaluating the viscosity at time 
t = (i- 1)~ leads to (42). This requirement is satisfied if both (14) and 

2- l+pF [ 1 
I-: 

=&(l) 
&C( 

hold true. The latter requirement is fulfilled in cases like a steel-mineral oil contact. 
Indeed, such a lubricated contact can be characterized by the following values 
y 2: lo-“, E = 10P3. M 2: lo-*, z = 0.7, and the maximum pressure pmax N lop,. This 
implies that, for such cases, (42) is always satisfied. Consequently, the linearization 
obtained by taking p = p(p “- ‘) does not lead to an additional limitation of the ) 
time step r. Figure 14 shows a numerical solution which is obtained in this way. 
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FIG. 14. The film thickness h of, and the pressure p in, a lubricant with a pressure-dependent 
viscosity. The x variable and the pressure are scaled as in Fig. 9; the film thickness is scaled 
with r/b:. The dimensional numbers, as introduced in Ref. [18], are M= 15 and L := 
z[p’oKy(w + vo/r)p5/(ny) = 10. 
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9. CONCLUSIONS 

Calculations of the pressure in the lubricating film between a deformable cylinder 
and a rigid surface can be performed on a PC using only a few gridpoints and 
a small amount of run time. Here, the numerical algorithm for this elastohydro- 
dynamic lubrication problem is based on the dynamic variation principle, so 
that mass flux defects cannot occur. The dynamic iteration can be speeded up by 
reducing the stiffness of the cylinder in several steps and by slowly increasing the 
loading on the cylinder. The number of calculations needed for one time-step is 
reduced by the introduction of a preconditioner. 
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